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Abstract: An important objective of Wireless Sensor Networks (WSNs) is to reliably sense data 
about the environment in which they are deployed. Reliability in WSNs has been widely studied 
in terms of providing reliable routing protocols for message dissemination and reliability of 
communication from sink to sensors. In this work, we define a reliability metric by the amount of 
data sensed by the network. In order to satisfy this reliability constraint, we propose a diffusion-
based approach for a deployment pattern for the sensor nodes. We show that this deployment 
pattern achieves sufficient coverage and connectivity and requires lesser number of sensors than 
popular regular deployment patterns. We further obtain the bounds on establishing connectivity 
between nodes in the WSN and extend this analysis for heterogeneous WSNs.  
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1 Introduction 

The placement of wireless sensor nodes in a deployment 
region resulting from various deployment strategies impacts 
the coverage in WSNs. The primary objective of 
deployment in a WSN is coverage of the entire sensing 
region for the duration of deployment. However, since 
sensor nodes are prone to failure due to running out of 
battery energy or failure due to device unreliability, it is 
desirable to have every point of the deployment region 
covered by more than one sensor at all times. The problem 
of coverage in the deployment region has led to research in 
both deterministic and random deployment patterns. While 
randomly scattering nodes in a deployment region is 
suitable for remote regions and eliminates the need for 
planning the locations of sensor nodes, sensor nodes 
deployed deterministically optimise available resources in 
terms of number of nodes and achieve other objectives such 
as rapid convergence of localisation algorithms and efficient 
communication between nodes and sink. 

In this paper, we study the following fundamental 
deployment problem: Given that we have N homogenous 
sensor nodes each with a certain sensing radius Rs that cover 
a deployment region of area A, what is a deployment pattern 
such that we can achieve (a) k-redundancy (where  
k-redundancy refers to each point in the deployment region 
being covered by k > 1 sensors) in the deployment region 
and (b) reliable network operation for at least T time units? 
This paper addresses the problem of deployment of sensors 
from the point of view of data obtained from the sensing 
operation. We define a measure of reliability of the sensing 
operation by the total amount of data obtained by the 
Wireless Sensor Network (WSNs) at the end of the 
minimum time T for which it was deployed to be 
operational. Assuming that a sensor obtains an amount of 
data I bytes in unit time, a WSN of y number of nodes in the 
network yields yIT  bytes of data at the end of T time units. 

We propose a diffusion-based deployment pattern that 
achieves this measure of reliability by modelling the total 
data obtained as a hypothetical, non-stationary, singular 
source that diffuses through the deployment region. At 
every time instant when a node is deployed, the data source 
is assumed to have diffused by an amount equal to the data 
sensed by a single sensor for duration T. 

At the end of the diffusion process, the deployment is 
complete and all the sensors have been deployed across the 
region with k-redundancy. We show that the resultant 
deployment pattern is advantageous in terms of use of 
resources when compared to current regular deployment  
 
 
 

patterns. Its advantage of requiring fewer number of sensors 
holds for any desired level of redundancy in the network, 
given that the number of nodes that we have to start with is 
at least A/As, where As is the area sensed by a single node, 
and A is the area of the entire deployment region. The 
following list is a summary of differences between our 
proposed diffusion-based deployment pattern and regular 
deployment patterns: 

• We describe a novel diffusion-based pattern for node 
deployment in WSNs. The novelty of this pattern lies in 
its potential for use in applications where deterministic 
or random deployment of nodes is not feasible. An 
example would be the deployment of a sensor network 
for monitoring toxic chemical leakages in a wide area, 
or monitoring the spread of an epidemic in a large 
geographical region. Our proposed diffusion-based 
deployment pattern assumes that all nodes are initially 
located at a single point, and are then diffused (placed 
at locations) throughout the sensing region 
incrementally. This diffusion may be performed by a 
mobile robot for unmanned applications. We design the 
diffusion-based deployment algorithm such that the 
distribution of the nodes at the end of the deployment is 
uniform.  

• The diffusion-based deployment pattern is designed to 
provide network operation for at least a pre-specified 
time T. This is in contrast to regular deployment 
patterns, where the topology of the network is 
determined by application-specific parameters or is 
random in random deployments. 

We also study the entropy of establishing connectivity, Ec, 
between nodes in a WSN. Establishing connectivity 
between nodes in WSN is key to ensuring reliable network 
operation. Connectivity guarantees that links in the WSN 
exist for timely transfer of data from nodes to the base 
station and for dissemination of queries and broadcast 
messages from the base station to nodes in the network. 
With the help of an analytical framework, we show the 
dependence of Ec on the densities of nodes and the role of 
the fading environment on Ec. We illustrate this framework 
by presenting bounds on Ec for a two-tier distribution of 
computationally powerful nodes and regular wireless sensor 
nodes in the network. These results can be used to design 
WSNs for robust network operation even in the case of 
sparse distribution of computationally powerful nodes in the 
network and thus highlight the importance of optimal 
network design in WSNs. 
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The following are the contributions of this work: 

• We design a diffusion-based deployment pattern that is 
guaranteed to ensure network operation for at least time 
T. This constraint is suitable for WSN applications, 
where the utility is fixed and application-specific  
(Ahn and Krishnamachari, 2006). An example of this 
would be a WSN deployed to determine the presence of 
intruders in a fixed time interval, after which the utility 
of the application is unaffected by the presence of 
intruders. We show that our diffusion-based deployment 
pattern requires lesser number of sensors than regular 
deterministic deployment patterns. 

• We establish the bounds on the entropy to establish 
connectivity between nodes in a WSN. These bounds 
can be easily extended to the case of heterogeneous 
networks, where one tier of nodes is more powerful 
than the next lower tier of nodes. The knowledge of the 
entropy to establish connectivity is important in the 
design of such heterogeneous networks, since the 
density of nodes in each tier determines cluster sizes. 
For the simple case of a hierarchical two-tier network 
design of powerful and regular nodes, the cluster size 
affects network performance parameters such as data 
aggregation efficiency and latency of data transfer 
between nodes and base station. Knowing the entropy 
of establishing connectivity can help us obtain optimal 
cluster sizes for efficient routing and data aggregation. 

• The analytical framework of our diffusion-based 
deployment pattern can be readily modified to find the 
entropy of establishing connectivity in random as well as 
deterministic deployment patterns. This can be done by 
obtaining the expected distance between locations of 
nodes and using them in the equations to find the entropy. 

The rest of the paper is organised as follows. Section 2 
presents related work in placement models for WSNs. 
Section 3 describes the diffusion-based deployment 
approach, presents the diffusion-based deployment 
algorithm for placement of nodes by overlay of planar 
graphs, and shows that the deployment pattern satisfies the 
constraint of for WSNs to establish connectivity. In Section 
4, we present simulation results to obtain the number of 
nodes required to cover a deployment region in the 
diffusion-based as well as other regular deployment 
patterns. Section 5 presents the entropy of connectivity 
between nodes for the diffusion based model of node 
placement. Finally Section 6 concludes the paper and 
presents directions for future research. 

2 Related work 

Many placement models for the deployment of sensor nodes 
have been developed (Hsin and Liu, 2004; Aldosari and 
Moura, 2006) according to various deterministic and stochastic 
processes. Node placement in mobile WSNs has been studied 
by Popa et al. (2006). Hsin and Liu (2004) describe algorithms 
to improve coverage by using random and coordinated sleep  
 

schedules in a network of static sensors deployed according to 
the Poisson point process. A simple coverage model is 
described by Wang et al. (2003), where the authors assume the 
sensing circle of a node as the boundary of the node’s coverage 
region. A point is said to be covered if there is a node whose 
Euclidean distance to itself is less than the node’s sensing range 
Rs. Wang et al. (2004, 2005) discuss information-theoretic 
approaches for sensor placement and selection for target 
localisation and tracking. Dulman et al. (2006) study the 
relationship between the number of hops and physical distance 
between nodes in a random deployment of nodes. They show 
that information about hop counts and node distances obtained 
from the deployment strategy can be used in designing efficient 
localisation protocols for WSNs. Krause et al. (2005a) model 
the sensed spatial phenomena as Gaussian processes. 
Knowledge of the Gaussian process allows for representation 
of uncertainty about the sensed field. Using mutual-information 
as an optimisation criterion, the authors describe an 
approximation algorithm to find sensor placements that provide 
most information about un-sensed locations. Koutsougeras et 
al. (2008) study event-driven deployment that deploys nodes 
based on the concentration of events in the deployment region. 
With the help of self-organising maps, the authors study the 
event-driven sensor coverage problem and show that the 
proposed event-driven deployment results in better distribution 
of sensors in the deployment region. Krause et al. (2005b) 
optimise sensor placement using mutual information deduced 
from modelling the sensed phenomenon as a Gaussian process 
and taking communication costs and sensing quality into 
consideration. Our work differs in that we study the 
deployment problem with threefold objectives: placement of 
nodes to satisfy coverage, connectivity and reliability. While 
the objective of coverage and connectivity has been widely 
studied, we study the problem with an additional constraint of 
reliability. To this end, we present an algorithm for statistically 
similar placement of static power-limited nodes in homogenous 
WSNs. We use the general disc-based sensing and coverage 
model for sensor nodes. The network is deployed for event-
driven sensing, where the nodes continuously sense the 
environment for a given parameter and report to the base 
station if the parameter deviates from some pre-defined 
threshold condition, e.g. high temperature. There are two 
widely used measures of network lifetime, one in which 
lifetime is defined as the time until the first node runs out of 
battery energy. The other measure of lifetime is the alpha-
lifetime (Zhang and Hou, 2004), which is defined as the entire 
interval in which at least alpha portion of the region R is 
covered by at least one sensor node. Existing literature in 
WSNs seeks to improve network lifetime by focusing on 
parameters such as improvement in coverage (Zhang and Hou, 
2004), MAC protocol (Srinivasan et al., 2001) and operating 
system performance (Gummadi et al., 2005). It is also 
important to study the problem where we would want a 
network to run for at least T time units with certain reliability 
metric. Protocols designed for such operation would result in 
robust real-life deployments, since the sensor network would 
reliably operate for the desired time interval without being 
subject to loss of information due to node failure from battery 
depletion. 



 Diffusion-based approach to deploying WSNs 225 

3 Diffusion-based deployment approach 

We consider the deployment of a WSN of homogenous, static 
sensor nodes over a deployment region for monitoring 
applications. We assume that the network of homogenous static 
sensor nodes is deployed to run for at least T time units, such 
that every point in the deployment region is continuously 
sensed for the interval T. We assume the disc model of sensing 
coverage, and denote the area sensed by a node as As, where As 
is equal to 2

sRπ , and Rs is the sensing radius of a sensor node. 
Let the amount of data sensed by a node ni in unit time interval 
be I bytes. We also assume k sensors sensing every point in the 
region at any point of time. Hence, the total amount of data 
obtained from the sensing region at the end of the time interval 
T is kITA/As. We also assume error-free communication links 
between the nodes and the base station. At the end of the 
interval T, the base station would have obtained  kITA/As data 
from the network if the sensing region were completely 
covered by at least kA/As sensor nodes for the entire interval T. 
This is the lower bound on the data that can be obtained from 
the region with the given number and sensing range of sensor 
nodes. The problem statement is as follows: Given that the 
minimum total data to be gathered is kITA/As, where k is the 
redundancy in the network, I is the data in bytes sensed by a 
single node with sensing area Rs, T is the desired interval of 
network operation and A is the deployment area, we need to 
find a placement strategy that achieves the desired amount of 
data. We assume the total data is aggregated into a single entity 
IT centred at a point p, where point p is an arbitrary location of 
placement of the first sensor node. We view IT  as a diffusing 
data source that diffuses across the deployment region. At the 
end of the deployment process, the total data is spread across 
the sensing region by the individual nodes that individually 
sense ITA/As amount of data. The diffusion equation for the 
diffusing source IT  can be written as:  

2

2= ,T TI ID
t x

∂ ∂
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 (1) 

where D is the diffusion coefficient. Let x be the Euclidean 
distance between any two locations of sensor nodes. Our 
goal is to find the length scale function L(t) (communication 
range), of the independent variable x such that for any two 
times t1 and t2, there are two locations x1 and x2 where the 
solution appears to be the same. In other words, when 
distance x is properly scaled, the ratios  

1 1 2 2

1 2

( , ) ( , )
=

( ) ( )
T TI x t I x t
T t T t

 (2) 

must have the same numerical value for all pairs of values 
of time t1 and t2 (Bai et al., 2006). There are two possible 
criticisms of the use of this equations that we will address: 

• Equation (1) is the one-dimensional diffusion equation, 
and since we are studying the deployment pattern in a 
two-dimensional deployment region, this equation is 
not appropriate. However, regardless of dimensionality, 
the diffusion equation can be split into uncoupled 
dimensionally independent equations (Ursell, 2007).  
 

Hence for ease of calculation, we use the one-
dimensional equation in two iterations to determine the 
x and y coordinates in each iteration of the diffusion.  

• The data distribution model is a singular, mobile source 
that is moving around in the sensing field to determine 
the locations of sensors. Even though WSNs are 
deployed to sense unpredictable events in varying bit 
rates, since we assume that there is no data aggregation, 
the total amount of data bytes accumulated at a central 
base station is the sum of individual node data at the 
end of the time duration T. Thus deployment according 
to the diffusion-based deployment pattern is a reverse 
approach to designing the network based on anticipated 
network capacity.  

We wish to find the length scale L that will satisfy the 
diffusion equation (1). The significance of determining the 
length scale is that it will provide us with the diffusion 
length. We use the diffusion length to find the distance 
between nodes. The diffusion equation (1) can be satisfied if 
it has the form  

( ), = ( ) ( )TI x t T t F η  (3) 

with = / ( )x L tη . Thus, the solution is the product of a pure 
function T of time and a function F that depends, at most, on 
a similarity variable η. In order to find the solution to 
equation (1) with the given initial and boundary conditions, 
we compute the partial derivatives of equation (3) and 
inserting them into equation (1), we obtain,  

2
2

2 = 0.

TLF L F tD L F
t T

∂⎛ ⎞
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This equation can be viewed as an ordinary differential 
equation in ( )F η , if the coefficients in parentheses are 
independent of time. Hence, we impose the additional 
constraints,  

= 2LL D
t

∂
∂

α  (5) 

and  

2

= .

TL
t D

T

∂
∂ β  (6) 

Equation (4) becomes  
2

2 2 = 0,F F F∂ ∂
+ −

∂∂
απ β

ηη
 (7) 

where α and β are constants, and the diffusion coefficient D 
is inserted for simplicity. To find the length scale L and the 
concentration scale T, integrate equation (5) with respect to t,  

( )2 2
0= 4 ,L t L Dt+ α  (8) 
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where L0 is some initial value. Substituting this value of L 
from equation (8) in equation (6), we get  

( ) ( ) / 42
0= 4 ,T t L Dt+

β α
γ α  (9) 

where the multiplicative constant γ can be chosen arbitrarily 
because the linear diffusion equation is homogenous in IT, 
and hence in T. Equations (8) and (9) represent the 
functional form of the length and concentration scales 
respectively. Our scale of interest is the length scale L, since 
it determines the distances between sensor nodes. Hence, α 
must be real and non-negative, or else from equation (8), L 
becomes imaginary. Accordingly we solve the diffusion 
equation for the case α = 0. In this case L0 must be non-zero 
or the length scale equation (8) ceases to exist. Let the 

arbitrary constant 2
0=| |L

−β
αγ  so that equation (9) becomes,  

4 2
0

20 0

4( ) = 1 = .lim

Dt

LDtT t e
L→
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β β
α

α
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Equation (7) becomes  

( )
2

2 = 0,F F∂
−

∂
β η

η
 (11) 

where, the similarity variable η is  

( )0

= = .
| |

x x
L L±

η  (12) 

For a bounded solution to the length and concentration scale 
equations, the exponent in equation (10) should be negative. 
Let 2= −β λ . Thus the solution to equation (11) takes the form  

( ) 0| | .
i x
LF e

±

∝
λ

η  (13) 

Collecting the partial results equations (10) and (13) and 
substituting them in equation (3), we get  

( ) 0

2

2 | |0, ,
Dt i x

L L
TI x t e e

− ±

∝

λ λ

 (14) 

where we need to solve for the constant length scale L0 to 
obtain the Euclidean distances between sensor positions in the 
placement problem. Consider a circular deployment region of 
radius R that contains the aggregate data source IT. The 
deployment process causes the aggregate source to diffuse at a 
rate proportional to the number of sensors and the distance 
from the initial position of the source. We define equilibrium of 
the diffusion process as the time instant t where all the sensors 
have been placed in the sensing region. Let the equilibrium 
data concentration be a constant value Ie. We need to solve the 
diffusion equation throughout the sensing region with the initial 
and boundary conditions,  

( ),0 = ,0 < <TI r I r R∞  (15) 

and  

( ), = , > 0.T eI r t I t  (16) 

The one-dimensional diffusion equation being a linear 
equation, any constant is a trivial solution of the diffusion 
equation as is any first-degree polynomial in x. We use a 
function 1( , ) = ( )u r t r I k+  (where k1 is a constant) as a 
solution of the diffusion-equation of the data source such 
that  

( ) ( ) ( , ), = ,T e e
u r tI r t I I I

r∞+ −  (17) 

which satisfies the initial and boundary conditions. 

( ),0 = ,0 < < ,u r r r R  (18) 

( ), = 0, > 0,u r t t  (19) 

and  

0
< .lim

r
u r

→
∞  (20) 

We use the solution developed in equation (14) such that the 
initial conditions of the unknown function u are satisfied. 
The data source diffuses along the radius R of the sensing 
region. The radius R of the deployment region is a natural 
length scale L0 and we write the second exponent in 
expanded trigonometric form,  

( ) ( ) ( )
2

2
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Dt
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−
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λ
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Thus the complete solution of the data source diffusion-
equation from Ghez (2001) is 

( ) ( ) ( )
( )
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Next, we compute the rate of data source diffusion J0 across 
the sensing region.  

( )
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We evaluate the rate of data diffusion at a small distance ε 
from the initial position of the source r = 0, where 0≈ε . 
Using the small-angle approximation in equation (23), we 
get,  

( )( ) ( )2/
0

=1
= 2 / 2 .n Dt R

e
n

J D I I n R e
∞

−

∞ − ε ∑ ππ  (24) 

We denote the quantity Dt  as the diffusion length. If the 
diffusion length is small compared to the radius of the 
sensing region, the exponent in equation (24) varies slowly 
with n and we can replace the sum by an integral over the 
continuous variable  

= / .n Dt Rξ π  
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Hence, we get,  

( )

( ) ( )
0 = *

/ 2 / / .

eJ I I

n R R Dt erfc Dt R

∞ −

π ε π π
 (25) 

Denote =ld Dt  as the diffusion length and re-arranging 
the terms we get,  

0 = ,l
l

J d
d erfc

m R
⎛ ⎞
⎜ ⎟
⎝ ⎠

π
 (26) 

where m is a constant given by  

( )( )= / 2 / .em I I n R R∞ − π ε π  (27) 

The problem of finding the distances between sensor nodes 
thus reduces to determining dl at time instants t. Since the 
diffusion-length dl is small compared to the dimensions of 
the sensing region, the argument of the complementary error 

function, 0ld
R
π

→ . 

0= ,l
J

d t
m

 (28) 

J0, the rate of data diffusion, can be viewed as the diffusion 
of an amount equal to ITA/As from the data source at every 
time instant when a sensor is deployed at a distance dl from 
the position of the source at the previous time instant. 
Conserving the dimensionality of J0,  

0 2

/
= .s

l

ITA A
J

d
 (29) 

Therefore the diffusion length ld  , i.e., the Euclidean 
distance between sensor nodes for a diffusion-based 
placement of sensor nodes across the sensing region is given 
by  

3
1= .l

s

ITAd t
m A

 (30) 

3.1 Deployment algorithm for sensor nodes 
according to the diffusion-based  
deployment algorithm 

Since we know the Euclidean distance dl between sensor 
nodes for the placement problem, we now define the graph 
G, which is obtained by tracing the motion of the mobile 
data source along the sensing region. 

3.1.1 Simulation of the diffusion-based deployment 
pattern 

We denote the point where a sensor is deployed as the 
vertex of the graph G, and the distance between sensors 
deployed at time instants t and t + 1 as an edge of G. The  
 
 

length of this edge is dl. Our aim is to draw planar graphs 
iteratively in the plane given by the sensing region. The 
algorithm proceeds as follows: 
Step 1: Starting from the center of the plane, we draw a 
planar graph G1 over the plane of the sensing region that 
traces the motion of the mobile data source, i.e. distance 
between sensors deployed at time instants t and t + 1 is dl. In 
this step, we deploy A/As number of sensors in the region. 
This step deploys the minimum number of sensors required 
to cover the region. 
Step 2: Repeat step one to increase the redundancy of 
coverage. This procedure continues for k steps, where k is 
the known value of redundancy that we wish to achieve in 
the network. At the end of k iterations, the plane of the 
sensing region can be viewed as covered by overlay of 
planar graphs, each of which covers the sensing region 
completely. The overlaying of planar graphs Gi, where 

= 1, 2,...i k , completely covers the sensing region with 
redundancy k.  

3.2 Relationship between the diffusion length and the 
sensing radius 

Since the communication range Rc has been shown to be at 
least twice the sensing radius Rs (Zhang and Hou, 2004) for 
connectivity, we check if our deployment satisfies this 
condition of connectivity. Re-writing equation (30) with 

2=s sA Rπ , we get,  

2/3
3 2

1= = ,l s
s

ITAd t jR
m R

−

π
 (31) 

where j is a constant given by 3
1= ITAj t
m π

 for a constant 

t. Since the area of the sensing region A is large and the time 
for which the network is deployed T is large, >> 2j ,  

2/3> 2 .l sd R−  (32) 

For the relationship between dl and sensing radius Rs, as 
sR →∞   

2/3

0
= 2 = 0,liml s

Rs

d R−

→
 (33) 

This equation holds because, as sR →∞ , the entire sensing 
region can be covered by only one sensor and there is no 
requirement for other sensors to be placed at distances equal 
to the diffusion length from the position of the previous 
sensor. For finite values of Rs, the diffusion length is always 
greater than twice the sensing radius and satisfies 
connectivity between adjacent nodes. Thus, our deployment 
problem satisfies the conditions for coverage and 
connectivity in the sensing region. Figure 1 shows the 
topology resulting from diffusion-based deployment pattern 
for two different ratios of communication radius to the 
sensing radius, i.e. /c sr r . 
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Figure 1 Diffusion-based deployment for varying rc/rs. The 
figure on the left depicts rc/rs = 2 and the figure on the 
right depicts rc/rs = 5 (see online version for colours) 

 

4 Results 

We now show how the diffusion-based sensor deployment 
pattern results in higher reliability while requiring less 
number of sensors than regular deployment patterns. From 
Section 3.2, we see that the diffusion-length dl is the distance 
between sensors deployed at successive time instants. When 
there is no redundancy in the network, dl is also the minimum 
distance required for nearest sensor neighbours to 
communicate. Hence, the ratio of the diffusion length to  
the sensing radius /l sd R  is also the widely studied coverage 
and connectivity metric /c sr r , which is the ratio of the 
communication range to the sensing range. 

4.1 Number of sensors required to sense the entire 
deployment region 

In this section, we show that the diffusion-based 
deployment pattern satisfies not only reliable operation by 
sensing IT amount of data; it requires less number of sensors 
than regular deployment patterns with the required level of 
k-redundancy in the network. To show this, we use the 
results obtained by Bai et al. (2006) where they define a 
parameter called the Area Per Node (APN) to show that out 
of the four regular patterns of deployment, namely square, 
triangular lattice, rhombus and hexagonal patterns, no 
pattern is best for all values of /c sr r . The APN denotes the 
area of the Voronoi polygon of all points in a Euclidean 
plane S. The number of nodes needed to cover the entire 
sensing region for a given regular deployment pattern is 
obtained by dividing the area of the deployment region by 
the maximum APN. We use Rs = 30 m and a circular 
deployment region of radius 1000 m. The communication 
range is varied between 15 m and 30 m. Figure 2 shows the 
ratio of the number of sensors needed to cover the 
deployment region using the diffusion-based approach to 
the number of sensors needed for each of the regular 
deployment patterns. The diffusion-based approach requires 
63% (Ndiffusion/Nsquare), 54% (Ndiffusion/Nhexagon) and 82% 
(Ndiffusion/Ntriangular) less number of sensors than the square, 
hexagon and triangular-based deployment patterns.  

Figure 2 Ratio of number of nodes needed in the diffusion-based 
approach to that in the square, hexagonal and triangular 
patterns (see online version for colours) 

 

4.2 Reliability of WSN as a function of the 
deployment pattern of nodes in the network 

In this section, we derive the reliability of the data obtained 
from a wireless sensing network as a function of the amount 
of data sensed by the nodes in the network. Since every 
node senses a quantity of data I in unit time, the total 
amount of data sensed by the network of sensor nodes for 
duration T of deployment is given by = /T sI kITA A . But,  

33= = = ,l c
s

ITA ITNd r t t
A m

 (34) 

where = / sN A A  is the number of nodes needed to cover the 
region completely according to the disc model for sensing. 
Solving for IT and substituting for Ndiffusion, Nsquare, Nhexagon 
and Ntriangular, we compare the amount of data sensed by the 
diffusion-based pattern with that in other regular 
deployment patterns namely, TI diffusion− , TI square− , 

TI triangular−  and TI hexagon−  and plot these ratios in 
Figure 3. The diffusion-based pattern has higher reliability 
as shown by improvement in amount of data bytes sensed. 
As seen from Figure 5, the improvement in reliability from 
the diffusion-based deployment pattern is by a constant 
factor equal to 1.9 (hexagonal), 1.7 (square) and 1.3 
(triangular lattice) patterns. The transition behaviour of the 
curves in Figures 2 and 3 at the values 1, 2  and 3  is 
due to the bounds of the APN and has been derived by Bai 
et al. (2006) for the hexagonal, square and triangular 
patterns, respectively. We direct the reader to Bai et al. 
(2006) for a detailed derivation of the APN for various 
regular deployment patterns. As seen in Figure 4, the greater 
efficiency of the diffusion-based deployment algorithm is 
because the coverage from nodes placed at the same point is 
treated differently in the diffusion-based deployment pattern 
and the regular deployment patterns studied by Bai et al. 
(2006). In the diffusion-based deployment pattern, if > 1n  
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sensors are deployed at a point, the coverage provided by 
these sensors is considered to be n times the coverage 
provided by a single sensor. Defining vacancy as the area in 
the deployment region that is not within the sensing range of 
any node, the diffusion-based deployment pattern results in 
a lower vacancy by virtue of the redundancy coverage 
which is factored into the estimation of coverage in the 
network. This is illustrated in Figure 4, where two sensors ni 
and nj are deployed at adjacent locations. For the diffusion-
based deployment, the computation of coverage provided by 
ni and nj is represented by the dotted circles. A more 
realistic coverage computation is shown for regular 
deployment patterns, where the coverage provided by ni and 
nj is the union of the coverage provided by ni and nj. These 
differing computations of coverage result in the diffusion-
based deployment pattern requiring lesser number of 
sensors and providing more data yield than that obtained in 
regular deployment patterns. 

Figure 3 Data sensed as a function of the coverage in  
regular and diffusion-based patterns (see online version 
for colours) 

 

Figure 4 Ratio of the amount of data sensed by the WSN  
during time T as a function of rc/rs (see online version 
for colours) 

 

5 Entropy of establishing connectivity between 
nodes 

In this section, we study the entropy of establishing 
connectivity between nodes in WSNs. We use the results of 
diffusion length from Section 3 to obtain the entropy of 
establishing connectivity from nodes to a central base 
station. We then establish the bounds on this entropy for a 
heterogeneous WSN of two types of nodes: computationally 
powerful nodes like cluster-heads (CHs) that act as local 
data processing centres and points of communication from 
nodes to base station (BS) and regular nodes that gather data 
about the phenomenon and transmit it to a local CH. Here 
we extend our analysis of connectivity entropy to 
heterogeneous networks and establish the dependence of 
this entropy on the density of nodes in each tier of the 
network. In the rest of this paper, we will refer to the 
powerful nodes in the second tier as CHs, though this 
framework can be extended to different kinds of 
heterogeneous networks. 

In this section, we study the following problem: What is 
the entropy of establishing connectivity Ec to a BS from any 
node in the WSN? Nodes can connect to a BS through 
multiple nodes that act as relays. We provide an analytical 
framework for deriving the dependence between Ec and the 
distributions of nodes in the deployment region. Since the 
randomness of the wireless channel plays an important role 
alongside node locations in determining the connectivity 
graph of the network, we model the wireless channel with 
randomness introduced by a lognormal shadow fading 
environment. This implies that a link between two nodes ni 
and nj separated by a Euclidean distance ( , ) = ls i j d  exists 
only if the signal attenuation between the nodes does not 
exceed the threshold attenuation ratio for communication 
between the nodes. Knowing the Euclidean distance 
between the nodes ni and nj, we denote the probability of 
forming a link between the nodes by ( )( , ) | ( , )P i j s i jΛ . In a 
shadow fading environment, the expression for 
( )( , ) | ( , )P i j s i jΛ  is given by Bettstetter (2002).  

( ) 10
0

1 1 10 ( , )( , ) | ( , ) = ,log
2 2 2

s i jP i j s i j erf dB
r

α
σ

⎛ ⎞
Λ − ⎜ ⎟

⎝ ⎠
 (35) 

where α is the path loss exponent due to the deterministic 
geometric component of attenuation in a shadow fading 
environment. σ denotes the standard deviation of the stochastic 
component chosen from a normal probability density function 
of attenuation. r0 is the normalisation term denoting the 
maximum distance granting a link in the absence of shadow 
fading. For threshold attenuation β, r0 is given by  

.10
0 = 10 .

th
dbr

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

β

α  

Further, we model the entropy to establish connectivity as a 
random sequence of vertices that a node ni traverses as it 
proceeds to establish connectivity with the base station. The  
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probability of choosing another node nj as the next hop node 
is proportional to the weight of the edge linking nodes ni 
and nj and is given by Pij. The weight of an edge is given by 
the probability of forming a link between the nodes ni and nj 
subject to the shadow fading environment. Pij can be 
expressed as the ratio of the weight of edge Wij between 
nodes ni and nj, to the total weights of all edges Wi 
emanating from node ni. Thus Pij is given by  

= / .ij ij iP W W  (36) 

Additionally, since nodes are assumed to be randomly 
assigned the sleep or awake states and since a node in the 
sleep state cannot form links with other nodes, the weight of 
an edge linking node ni to another node nj in the sleep state 
is taken to be zero. We also assume that node ni knows the 
number of neighbours it has, by counting the number of 
links it can form. The node nj with the highest edge weight 
(lowest signal attenuation) is chosen as the next hop node 
for node ni. The sequence of nodes that a node ni uses to 
reach the base station is modelled as the sequence of 
random states {Si}, where the maximum value of n is given 
by the number of nodes in the network. The sequence of 
states can be expressed as  

0 = 0.S  (37) 

and 1 = rS P  (randomly choosing any node in the network as 
the starting vertex). 

1 = * .n n ijS S P+  (38) 

Thus the entropy to establish connectivity Ec is the entropy 
of the random sequence of states { }iS  and is given by,  

1
1 2

=1
( , ,... ) = ( | )

n
i

n i
i

H S S S H S S −∑  (39) 

( ) 1
1

=2

= ( | ).
n

i
i

i

H S H S S −+∑  (40) 

where equation (39) holds because of the chain rule of 
entropies and equation (40) is due to property of Markov 
chains. Let l be the number of edges emanating from node 

in , i.e. the probability of forming a link from node in  to l 
other nodes exists. Thus, the second term of the expression 
can be expressed as,  

( )
=2 =1

/ .
n l

ij i
i j

H W W∑∑  (41) 

where H  depends on the (probability of forming a link 
from node in  to node jn )/ sum of probabilities of forming a 
link from node in  to all l nodes. l is the number of 
neighbour links that a node has in presence of shadow 
fading environment. The entropy of starting the graph at any 
node is given by  

( )1 = 1/ log1/ ,H S n n−  (42) 

where n = number of nodes in the network. To obtain the 
second term of the expression for cE , we note that 

( )( , ) | ( , )P i j s i jΛ  is given by equation (35) and iW  is 

obtained as the sum of the probabilities ( )( , ) | ( , )P i j s i jΛ  

on all links emanating from node in . 

5.1 Bounds on cE  

To study the entropy to establish connectivity between tiers 
of nodes in a heterogeneous network, we consider a WSN of 
two types of nodes: a homogeneous set of wireless sensor 
nodes that perform sensing and another homogeneous set of 
CHs, where each CH aggregates data from the nodes 
belonging to its cluster. The deployment region is assumed 
to be a two-dimensional Euclidean space of area A in which 
the wireless sensor nodes are distributed as a Boolean model 
formed by a Poisson-distributed sequence of random sets. 
These random sets are the disk-shaped circles of coverage 
of individual nodes with radius r. The centers of coverage 
circles are assumed to form a stationary Poisson process of 
intensity 1λ . We define another similar stationary Poisson 
process of intensity 2λ  for the CHs. The CHs are assumed 
to have greater processing power to enable inter-cluster 
communication capabilities and for data aggregation from 
nodes belonging to its cluster. Clustering is a realistic 
scenario for large-scale, dense WSNs deployed according to 
a random topology for sensing in remote, hostile 
deployment regions. 

We model the links between nodes and the CHs as a 
connected random graph, where the nodes comprise the 
vertices of the random graph, and the links between nodes 
comprise the edges of the random graph. The links between 
nodes represent the connectivity between nodes and CHs 
and the number of nodes attached to a CH represent the 
cluster size. We assume that a node can be either in sleep or 
awake states. In the sleep state, a node’s transceiver is 
turned off and hence cannot form links with any other 
nodes. In this section, we provide upper and lower bounds 
on cE  and show its dependence on the intensity of CH 
distribution as well as on the probability of connectivity 
between nodes, ( )( , ) | ( , )P u v s u vΛ . 

If the WSN is designed for operation such that all 
wireless sensor nodes as well as CHs are awake at all times, 
the probabilistic nature of a node being in the ‘awake’ or 
‘sleep’ states is eliminated. The sequence of states { }iS  thus 
depends only on the probability of forming links between 
nodes, i.e. when the signal attenuation stays below the 
threshold required for communication. The upper bound on 
the entropy maxcE −  is obtained when all the nodes are 
awake and every node i maintains links to all its neighbors 
who lie within the one-hop communication range. 
Additionally, the assumption of the log-normal distribution 
allows for forming links with nodes located greater than  
distance ld  away from a node i. The sequence of states 
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{ }iS  can then be modelled by a random walk on a 
connected graph with a stationary Markov chain, and its 
entropy maxcE −  is given by  

( ) ( )

( )

max 1 2 2 1

2 1
=1

= , ,..., = | ,

= | = ,

c n

n

i
i

E H S S S H S S

H S S i

−

μ∑
 (43) 

where iμ  is the stationary distribution of the Markov chain. 
The lower bound on the entropy c minE −  can be similarly 
obtained. When the attenuation due to fading results in zero 
probability of connectivity for any node pair, the graph 
formed by the wireless sensor nodes and CHs does not 
contain any edges. Thus the lower bound c minE −  is just the 
entropy of choosing any given node as the starting vertex to 
analyse the entropy of connectivity to the CH.  

( )min 1= .cE H S−  (44) 

While the above analysis holds for a given intensity 2λ  of 
distribution of CHs, we can also present bounds on cE  for 
varying levels of CH distribution. The bounds in this case 
are readily obtained. If the intensity of distribution of CHs, 

2λ , is increased to be equal to the intensity 1λ  of wireless 
sensor nodes while keeping the area of the deployment 
region constant, the distribution of CHs relative to that of 
the nodes becomes a high-intensity distribution and the 
expected number of nodes per cluster is one. In this case the 
entropy of the sequence of states, assuming connectivity 
between nodes and CHs, is just the entropy of choosing one 
out of n nodes in the WSN and provides the lower bound on 
entropy for equal distributions of CHs and wireless sensor 
nodes. Thus,  

( ) ( )min 2 1 1. . = = = 1/ log1/ .cE s t H S n nλ λ− −  (45) 

Similarly, when the distribution of CHs is much less than that 
of nodes, i.e. 2 1λ λ=  the expected cluster size per CH 
increases. The largest cluster size is obtained when the 
intensity of CH distribution 2λ  equals zero. This results in a 
WSN with only one CH for all = / sn kA A  wireless nodes, and 
the entropy cE  is the highest. Thus the upper bound on cE , 
assuming connectivity among nodes and CHs is given by 

( ) ( )c max 2 1 2E s.t. = 0 = , ,..., .nH S S S− λ  (46) 

6 Concluding remarks 

In this paper, we addressed the problem of reliability in WSNs 
from the point of view of data obtained from the sensing 
operation in the deployment region. We proposed a diffusion-
based approach to the placement of nodes in the sensing region 
by modelling the total data content of the network as 
hypothetical, non-stationary, singular data source. At every  
 
 

time instant when a node is deployed, the source diffuses an 
amount of data equal to the data content sensed by a single 
node over the duration of deployment. The solution to the 
diffusion-based deployment problem is a function of the 
communication radius of the sensor node. We also investigated 
the ratio between the number of sensors required to cover the 
sensing region using the diffusion-based approach to those 
required using regular (square, hexagon and triangular-lattice) 
deployment patterns and found that the diffusion-based pattern 
requires lesser number of sensors than the aforementioned 
regular patterns. We introduced a measure of reliability of 
network operation in terms of the total amount of data sensed 
by the network and showed that the reliability of network 
operation is a function of the deployment pattern of nodes in 
the network. Finally, we measured the reliability of WSNs 
deployed using regular deployment patterns and showed that 
the diffusion-based approach to deployment of sensor nodes 
results in reliable network operation compared to other regular 
deployments. We also provided an analytical framework to 
determine the entropy of establishing connectivity in 
heterogeneous networks in a shadow fading environment. The 
sequence of nodes used to determine cE  may not be the 
shortest path to the powerful node, but is more robust since at 
every time instant, a node in  chooses the next-hop node that 
has the least attenuation among all nodes linked to node in . 
Our results draw attention to the need for sensitivity analysis of 
distributions of CHs relative to the number of nodes in a WSN. 
We also present bounds on the entropy to establish connectivity 
and show its dependence on the density of CHs as well as on 
the attenuation caused to the randomness in the wireless channel. 

Future work in this direction includes incorporating edge 
effects by providing efficient coverage in the boundary of the 
deployment region. More work in this area can be 
investigation of the problem of stochastic sources of error in 
sensed data due to device unreliability and sink-initiated error 
detection and recovery problem for deviant sensors in WSNs. 
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